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Linear Partial Differential Equations

General Second-Order Equations of Mixed Type

a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)uyy = 0

Let λ1(x, y) and λ2(x, y) be two eigenvalues of (aij(x, y))2×2

Mixed Hyperbolic-Elliptic Type: λ1(x, y)λ2(x, y) changes sign

Fundamental Equations of Mixed Type

Lavrentyev-Bitsadze Equation: uxx + sign(x)uyy = 0

Tricomi Equation: uxx + xuyy = 0 (hyperbolic degeneracy at x = 0)

Keldysh Equation: xuxx + uyy = 0 (parabolic degeneracy at x = 0)

* Euler-Poisson-Darboux Equation, Beltrami Equation, · · ·
* Fuchs-type PDEs, · · ·
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Riemann Problem: Bernhard Riemann 1860
Über die Fortpflanzung ebener Luftvellen von endlicher Schwingungsweite.
Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 8 (1860), 43–65.
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One-Dimensional Riemann Problem I

Hyperbolic Conservation Laws:

∂t U + ∂xF(U) = 0 for x ∈ R.
Riemann Problem:

U(0, x) =

®
UL for x < 0,

UR for x > 0.

The general one-dimensional Riemann problem was first solved by Lax
in 1957 with desired estimates under reasonable structural hypotheses.

=⇒ Various extensions · · · · · ·
Riemann solutions consist of combinations of three-type elementary waves:
shocks, centred rarefaction waves, contact discontinuities.

*Peter D. Lax: Hyperbolic Systems of Conservation Laws. II.
Communications on Pure & Applied Mathematics, 10 (1957), 537–566.
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One-Dimensional Riemann Problem II

Hyperbolic Conservation Laws:

∂t U + ∂xF(U) = 0 for x ∈ R.
Riemann Problem:

U(0, x) =

®
UL for x < 0,

UR for x > 0.

The general one-dimensional Riemann problem was first solved by Lax
in 1957 with desired estimates under reasonable structural hypotheses.

=⇒ Various extensions · · · · · ·
Riemann solutions consist of combinations of three-type elementary waves:
shocks, centred rarefaction waves, contact discontinuities.
=⇒ Building blocks of the Glimm scheme (1965),

the Lax-Friedrichs scheme (1954), the Godunov scheme (1959),
wave front-tracking schemes, · · · · · · .

=⇒ Existence theory of entropy solutions – weak solutions satisfying the
entropy conditions – for the general initial value problem in BV or L∞.

Riemann solutions determine the local structure, the asymptotic
states, and the global attractors of general entropy solutions.

See Books: Dafermos 2016, Chen-Feldman 2018, Liu 2021, · · · .
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Bow Shock in Space generated by a Solar Explosion
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Blast Wave from a TNT Surface Explosion
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Shock Waves generated by Aircrafts
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Classification of 2-D Riemann Problems for the Euler Eqs.

Classification: Zhang-Zheng 1990, Chang-Chen-Yang 1995, 2000,

Li-Zhang-Yang 1998, Lax-Liu 1998, · · · .
Rigorous Analysis for Solvability: Wide Open!
⇐= Free Boundary Problems for Nonlinear PDEs of Mixed Type!
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Euler Equations for Potential Flow: (u, v) = ∇xΦ – Velocity∂tρ+∇x · (ρ∇xΦ) = 0 (Conservation of mass)

∂tΦ+ 1
2 |∇xΦ|2 + h(ρ) = B (Bernoulli’s law)

with h(ρ) = ργ−1

γ−1 for the pressure exponent γ > 1 for p(ρ) = ργ

γ .

or, equivalently,

∂tρ(∂tΦ,∇xΦ) +∇x ·
(
ρ(∂tΦ,∇xΦ)∇xΦ

)
= 0,

with ρ(∂tΦ,∇xΦ) = h−1(B − ∂tΦ+ 1
2 |∇xΦ|2).

Aerodynamics/Gas Dynamics: Fundamental PDE

The potential flow equations and the full Euler equations coincide in
important regions of the solution in this problem.

J. Hadamard: Leçons sur la Propagation des Ondes, Hermann: Paris 1903

P.-L. Lions: Mathematical Topics in Fluid Mechanics, Oxford 1996, 1998

Majda-Thomann: CPDE 1987, Morawetz: CPAM 1994, · · ·
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Riemann Problem with Four-Shock Interactions:

Riemann Initial Condition:

(ρ,∇xΦ)|t=0 = (ρi, ui, vi), x = (x1, x2) ∈ Λi, i = 1, 2, 3, 4.

Initial data chosen to generate exactly four planar shocks

−→ State (2) fixed, other states become functions of angles

max{ρ1, ρ3} < min{ρ2, ρ4}

Invariant under the Self-Similar Scaling:

(t,x) −→ (αt, αx), (ρ,Φ) −→ (ρ(αt, αx), Φ(αt,αx)
α ) for α ̸= 0
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Seek Self-Similar Solutions: (ξ, η) = (x1

t ,
x2

t ), D = (∂ξ, ∂η)

ρ(t,x) = ρ(ξ, η), Φ(t,x) = t
(
φ(ξ, η) + 1

2(ξ
2 + η2)

)

div (ρ(Dφ,φ)Dφ) + 2ρ(Dφ,φ) = 0

Elliptic: |Dφ| < c∗(φ,B) :=
√

2(γ−1)
γ+1 (B − φ)

Hyperbolic: |Dφ| > c∗(φ,B) :=
»

2
γ+1(B − φ)

Second-Order Nonlinear Equations of
Mixed Elliptic-Hyperbolic Type
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Riemann Problem with Four-Shock Interactions
Symmetric Case: θ12 = θ14 =: θ1, θ32 = θ34 =: θ2, ρ2 = θ4
In this case, the horizontal axis becomes a rigid wall Γsym = {η = 0}.

Boundary Value Problem in the Coordinates (ξ, η):

Slip Boundary Condition on Γsym: Dφ · ν = 0 on Γsym.

Asymptotic Boundary Condition as r :=
√
ξ2 + η2 → ∞:

Dφ− (u1 − ξ, v1 − η) → 0 0 < η < ξ tan θ1, ξ > 0,

Dφ− (u2 − ξ, v2 − η) → 0 − η cot θ2 < ξ < η cot θ1, η > 0,

Dφ− (u3 − ξ, v3 − η) → 0 0 < η < ξ tan θ2, ξ < 0,

Locations of Shocks S26 and S25 are apriori known when θi ∈ (0, θsonic), i = 1, 2.
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Shocks: Rankine-Hugoniot (R-H) Conditions

Shocks are discontinuities in the pseudo-velocity Dφ: If

Ω+ and Ω− := Ω \ Ω+ are nonempty and open.

S := ∂Ω ∩ Ω is a C1–curve where ∇φ has a jump,

then φ ∈ C1(Ω± ∪ S) ∩ C2(Ω±) is a global weak solution in Ω.

⇐⇒ φ satisfies

The potential flow equation in Ω±.

The Rankine-Hugoniot (R-H) conditions on S:

[φ]S = 0,

[ρ(Dφ,φ)Dφ · ν]S = 0,

where [ · ]S is the jump of the quantity across S.

Entropy Condition: The density function ρ(Dφ,φ) increases across a
shock in the pseudo-flow direction.

The entropy condition indicates that the normal derivative function Dφ · ν
on a shock always decreases across the shock in the pseudo-flow direction.
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Constant Density State and Sonic Arcs

Constant Density State: If ρ = ρ0 (a constant), then

φ(ξ, η) = −1

2
(ξ2 + η2) + u0ξ + v0η + k0 for u0, v0, k0 ∈ R

Sonic Arcs: If ρ = ρ0, then the flow is sonic, that is, M = 1 iff

|Dφ| = c0 := ρ
γ−1
2

0 ⇐⇒ |(ξ, η)− (u0, v0)| = c0

The circle ∂Bc0(u0, v0) is called the sonic circle of the constant density
state ρ = ρ0.
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Free Boundary Problem for Mixed-Type PDEs: θ1, θ2 < θsonic

Find a curved shock Γshock and a function φ defined in region Ω, enclosed
by Γ5

sonic,Γshock,Γ
6
sonic, and Γsym := {η = 0} such that φ satisfies

(i) Equation (*) and Subsonicity in Ω;

(ii) Free Boundary Conditions: φ = φ2, ρDφ · νs = Dφ2 · νs on Γshock;

(iii) φ = φi, Dφ = Dφi on Γi
sonic, i = 5, 6;

(iv) Dφ · νsym = 0 on Γsym,

where νs and νsym are the interior unit normals on Γshock and Γsym resp.

*Caffarelli, Alt-Caffarelli-Friedman, Kinderlehrer-Nirenberg, Caffarelli-Jerison-Kenig, Figalli · · ·
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Mathematical Challenges
Nonlinear PDEs of Mixed Elliptic-Hyperbolic Type

The transition boundary between the elliptic and hyperbolic phases is a
priori unknown, so that most of the classical approaches, especially the
fundamental solution approach, no longer work

New Approaches for Free Boundary Problems

Optimal Estimates of Solutions to Nonlinear Degenerate PDEs
Nonlinear elliptic degenerate PDEs (Keldysh-type degeneracy, ...)
Match of two boundary conditions

Corner Singularities (Nonlinear PDEs without growth conditions)
Corner formed by the reflected-diffracted shock (free boundary) and
the sonic arc (degenerate elliptic curve)
Corner between the reflected shock and the wedge at the reflection
point for the transition from the supersonic to subsonic
reflected-diffraction configuration when the wedge angle decreases.

Geometric Properties of Free Boundaries (Transonic Shocks)
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Theorem (Existence and Optimal Regularity of Weak Shock Solutions for All
Incident Angles up to the Sonic Angle: Chen-Cliffe-Huang-Liu-Wang: JEMS 2024)

There is a unique sonic angle θsonic depending only on (γ, v2) such that, when
θ1, θ2 ∈ (0, θsonic), there exists a weak solution φ with Γshock such that

(i) Γshock ⊂ R2
+ \Bc2(O2) and S26 ∪ Γshock ∪ S25 is C2,α;

(ii) φ ∈ C∞(Ω \ (Γ5
sonic ∪ Γ6

sonic)) ∩ C2,α(Ω \ {P2, P3}) ∩ C1,1(Ω);

(iii) |Dφ| < c(|Dφ|2, φ) in Ω (i.e., elliptic in Ω);

(iv) max{φ5, φ6} ≤ φ ≤ φ2 in Ω;

(v) lim
P∈Ω,P→P∗

(Drrφ − Drr max{φ5, φ6}) =
1

γ + 1
for any P∗ ∈ (Γ5

sonic ∪ Γ6
sonic) \ {P2, P3};

(vi) lim
p∈Ω,P→{P1,P2}

D2φ do not exist.

(v) φ∞ − φ satisfies several important monotonicity properties∗.
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Theorem (Beyond the Sonic Angle: θ1 and/or θ2 ∈ [θsonic, θdetach]
Chen-Cliffe-Huang-Liu-Wang: JEMS 2024; arXiv:2305.15224)

The Existence and Optimal Regularity Theorem still holds correspondingly,
even when the incident angles θ1 and/or θ2 are between the sonic angle
θsonic and the detachment angle θdetach > θsonic:

θ1 ∈ [θsonic, θdetach) and/or θ2 ∈ [θsonic, θdetach)

*The approach and related techniques have been developed
based on the ideas/techniques from our earlier related work

Chen-Feldman 2018 (Research Monograph): The Mathematics of Shock
Reflection-Diffraction and von Neumann’s Conjectures, 832 pages,

Annals of Mathematics Studies, 197, Princeton University Press, 2018
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Iteration Procedure: Incident Angles up to the Detachment Angle

Strict monotonicity properties

Uniform C0,1 estimates of Ω,Γshock and φ w.r.t. θ1 and θ2

Uniform estimate of ellipticity of the equation for φ

Uniform weighted C2,α estimates of φ (in Ω) and Γshock

Define an iteration set K and an iteration mapping I
Show that K = [0, θ∗]×K(θw) and F satisfy the following:

(a) F : K ⊂ [0, θ∗]× C2,α
∗ → C2,α

∗ is continuous

(b) K is relatively open in [0, θ∗]× C2,α
∗

(c) F(θw, ·) : K(θw) → K(θw) has no fixed point on ∂K(θw)

Show that deg(F(0, ·)− Id,K(0), 0) ̸= 0

=⇒ ∃ a Fixed Point φ (via the Leray-Schauder degree theory)
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Convexity of Transonic Shocks and Uniqueness/Stability

Chen-Feldman-Xiang (ARMA 2020): All of the transonic shocks in these
problems are uniformly convex except Some Ending Points.

=⇒ Uniqueness and stability of global Riemann solutions
with respect to the angles θ1 and θ2 (Preprint 2024)

*Caffarelli-Jerison-Kenig, Caffarelli-Salazar, Caffarelli-Spruck, Dolbeault-Monneau,

Evans-Spruck, Plotnikov-Toland, · · · · · ·
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Self-Similar Solutions for the Full Euler Equations
(u, v, p, ρ)(t,x) = (U, V, p, ρ)(ξ1, ξ2), (ξ1, ξ2) =

x
t

∂ξ1(ρU) + ∂ξ2(ρV )ξ2 + 2ρ = 0,

∂ξ1(ρU
2 + p) + ∂ξ2(ρUV ) + 3ρU = 0,

∂ξ1(ρUV ) + ∂ξ2(ρV
2 + p) + 3ρV = 0,

∂ξ1
(
U(

1

2
ρq2 +

γp

γ − 1
)
)
+ ∂ξ2

(
V (

1

2
ρq2 +

γp

γ − 1
)
)
+ 2

(1
2
ρq2 +

γp

γ − 1

)
= 0,

where q =
√
U2 + V 2 and (U, V ) = (u, v)− ξ is the pseudo-velocity.

Choose W = (U, V, p, ρ) as the state variable. Then the system can be written as

∂ξ1F (W ) + ∂ξ2G(W ) = H(W ).

The eigenvalues, determined by |λ∇WF (W )−∇WG(W )| = 0, are

λ0 =
V

U
(repeated), λ± =

UV ± c
√
q2 − c2

U2 − c2
,

where c =
√
γp/ρ is the sonic speed.
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Self-Similar Solutions for the Full Euler Equations
(u, v, p, ρ)(t,x) = (U, V, p, ρ)(ξ1, ξ2), (ξ1, ξ2) =

x
t

(ρU)ξ1 + (ρV )ξ2 + 2ρ = 0,

(ρU2 + p)ξ1 + (ρUV )ξ2 + 3ρU = 0,

(ρUV )ξ1 + (ρV 2 + p)ξ2 + 3ρV = 0,(
U(

1

2
ρq2 +

γp

γ − 1
)
)
ξ1
+

(
V (

1

2
ρq2 +

γp

γ − 1
)
)
ξ2
+ 2

(1
2
ρq2 +

γp

γ − 1

)
= 0,

where q =
√
U2 + V 2 and (U, V ) = (u, v)− ξ is the pseudo-velocity.

Eigenvalues: λ0 =
V
U (repeated), λ± =

UV±c
√

q2−c2

U2−c2
,

where c =
√

γp/ρ is the sonic speed

When the flow is pseudo-subsonic: q < c, the system consists of
2-transport equations: Compressible vortex sheets
2-nonlinear equations of mixed hyperbolic-elliptic type:
Two kinds of transonic flow: Transonic shocks and sonic curves

*G.-Q. Chen: Two-Dimensional Riemann Problems:
Transonic Shock Waves and Free Boundary Problems.
Commun. Appl. Math. Comput. 5 (2023), no. 3, 1015–1052.
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Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type
or No Type in Differential Geometry
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• Mathematics:  Differential Geometry, Topology, ..….

• Understanding evolution of sophisticated shapes of surfaces or thin sheets 
in nature, including

--Elasticity, Materials Sciences. ….
--Biology and Algorithmic Origami:  Protein Folding, ….

*US DARPA’s 10th question of the  23 Challenge Questions in the Sciences
[US Defense Advanced Research Project Agency]: 

Build a stronger mathematical theory for isometric and  rigid embedding 
that can give insight into protein folding.

• Data Science, ….
• Human Design, Visual Arts, …..  

History: Schlaefli (1873),  Darboux (1894),  Hilbert (1901),  Weyl (1916),  

Janet (1926-27),  Cartan (1926-27),  Lewy (1936),  Nash (1954-56),  Kuiper (1955), 
Yau (1980's, 1990's), Gromov (1970, 1986),  Günther (1989),  Poznyak (1973), 
Levi (1908),  Heinz (1962),  Alexandroff (1938, 1942),  Pogorelov (late 1940's, 1972), 
Nirenberg (1953, 1963),  Efimov (1963),  Bryant-Griffiths-Yan (1983), Lin (1985-86),  
Hong (1991,1993),  Y. Li (1994), ……

Can even more sophisticated surfaces or thin
sheets be realized in the Euclidean spaces? 

Fundamental:

Question:

*Q. Han & J.-X. Hong: Isometric Embedding of Riemannian Manifolds in Euclidean
Spaces, AMS, 2006
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Isometric Embedding of Riemannian Manifolds
(M2,g) in R3

Ω ⊂ R2 — Open set, g = (gij) — Given matric on M2.

Seek a map r : Ω → R3 such that

dr · dr = g11(dx)
2 + 2g12dxdy + g22(dy)

2 := I (1st fund. form)

⇐⇒ ∂xr · ∂xr = g11, ∂xr · ∂yr = g12, ∂yr · ∂yr = g22

so that (∂xr, ∂yr) in R3 are linearly independent.

The 2nd fundamental form:

II = −dn · dr := h11(dx)
2 + 2h12dxdy + h22(dy)

2

where n = ∂xr×∂yr

|∂xr×∂yr| is the unit normal of the surface r(Ω) ⊂ R3.
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Gauss-Codazzi System: Compatibility/Constraint

Fundamental Theorem in Differential Geometry: There exists a
surface in R3 whose 1st and 2nd fundamental forms are I and II if
the coefficients {gij} and {hij} of the two given quadratic forms I
and II, I being positive definite, satisfy the Gauss-Codazzi system.

*This theorem holds even when hij ∈ Lp (Ciarlet, Mardare, · · · )
For given {gij}, {hij} is determined by the Codazzi Equations (Compatibility):{

∂xM − ∂yL = Γ
(2)
22 L− 2Γ

(2)
12 M + Γ

(2)
11 N,

∂xN − ∂yM = −Γ
(1)
22 L+ 2Γ

(1)
12 M − Γ

(1)
11 N,

and the Gauss Equation (Constraint):

LN −M2 = K (Monge-Ampère Constraint)

where L = h11√
|g|

, M = h12√
|g|

, N = h22√
|g|

, |g| = g11g22 − g212

Christoffel symbols: Γ
(k)
ij = 1

2g
kl(∂jgil + ∂igjl − ∂igij)

Gauss curvature: K(x, y) = R1212

|g|

Riemann curvatures: Rijkl = glm
(
∂kΓ

(m)
ij − ∂lΓ

(m)
ik + Γ

(n)
ij Γ

(m)
nk − Γ

(n)
ik Γ

(m)
nj

)
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Gauss-Codazzi System: Compatibility/Constraint

For given {gij}, {hij} is determined by the Codazzi Equations (Compatibility):{
∂xM − ∂yL = Γ

(2)
22 L− 2Γ

(2)
12 M + Γ

(2)
11 N,

∂xN − ∂yM = −Γ
(1)
22 L+ 2Γ

(1)
12 M − Γ

(1)
11 N,

and the Gauss Equation (Constraint):

LN −M2 = K (Monge-Ampère vonstraint)

Consider U := (M,N)⊤ as the state variables. If N ̸= 0, then the Gauss-Codazzi
system can be written as

∂xU + ∂yF (U) = L.O.T.

The eigenvalues of the system, determined by |λI −∇UF (U)| = 0, are

λ± =
−M ±

√
−K

N
.

Nonlinear PDEs of Mixed Elliptic-Hyperbolic Type: Sign of K

Hyperbolic if K < 0.

Elliptic if K > 0.

Parabolic if K = 0.
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Surfaces with Gauss Curvature of Changing Sign

K<0

K>0

Gauss Curvature K on a Torus:
Toroidal Shell or Doughnut Surface
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Fluid Dynamics Formalism for Isometric Embedding

Set L = ρv2 + p, M = −ρuv, N = ρu2 + p, q2 = u2 + v2.

Choose p as the Chaplygin-type gas: p = −1/ρ.

The Codazzi Equations become the Momentum Equations:{
∂x(ρuv) + ∂y(ρv

2 + p) = −Γ
(2)
22 (ρv

2 + p)− 2Γ
(2)
12 ρuv − Γ

(2)
11 (ρu

2 + p),

∂x(ρu
2 + p) + ∂y(ρuv) = −Γ

(1)
22 (ρv

2 + p)− 2Γ
(1)
12 ρuv − Γ

(1)
11 (ρu

2 + p),

and the Gauss Equation becomes the Bernoulli Relation: p = −
√
q2 +K.

Define the sound speed: c2 = p′(ρ). Then c2 = 1/ρ2 = q2 +K.
c2 > q2 and the “flow” is subsonic when K > 0,
c2 < q2 and the “flow” is supersonic when K < 0,
c2 = q2 and the “flow” is sonic when K = 0.

?? Weak Continuity and Existence for the Gauss-Codazzi Equations
⇐ Weak Convergence Methods: Compensated Compactness

Chen-Slemrod-Wang: Commun. Math. Phys. 2010

*Cao-Han-Huang-Wang (2023): K < 0 [surfaces with finite total curvature]

*Christoforou-Slemrod (2016), S. Li (2020), · · ·
*Acharya-Chen-Li-Slemrod-Wang (2017): 2D and 3D & Evolution Problems
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Gauss-Codazzi-Ricci System for Isometric Embedding of
d-D Riemannian Manifolds into RN : d ≥ 3

Gauss Equations: hajih
a
kl − hakih

a
jl = Rijkl

Codazzi Equations:

∂halj
∂xk

−
∂hakj
∂xl

+ Γm
lj h

a
km − Γm

kjh
a
lm + κakbh

b
lj − κalbh

b
kj = 0

Ricci Equations:

∂κalb
∂xk

−
∂κakb
∂xl

− gmn
Ä
hamlh

b
kn − hamkh

b
ln

ä
+ κakcκ

c
lb − κalcκ

c
kb = 0

where Rijkl is the Riemann curvature tensor, κakb = −κbka is the
coefficients of the connection form on the normal bundle; the indices a, b, c
run from 1 to N , and i, j, k, l,m, n run from 1 to d ≥ 3.
*The Gauss-Codazzi-Ricci system has no type,

neither purely hyperbolic nor purely elliptic
for general Riemann curvature tensor Rijkl (S.-S. Chern & H. Levy)

*Bryant-Griffiths-Yang (1983): Duke Math. J., 102 pages.

*Chen-Clelland-Slemrod-Wang-Yang (AJM 2018): Positive Symmetric Systems
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Weak Continuity/Rigidity of
the Gauss-Codazzi-Ricci System

Theorem (Chen-Slemrod-Wang: Proc. Amer. Math. Soc. 2010)

Let (ha,ε
ij , κ

a,ε
lb ) be a sequence of solutions to

the Gauss-Codazzi-Ricci system, which is uniformly

bounded in Lp, p > 2.

=⇒
The weak limit vector field (ha

ij, κ
a
lb) of the sequence (ha,ε

ij , κ
a,ε
lb )

in Lp is still a solution to the Gauss-Codazzi-Ricci system.
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Observations: Div-Curl Structure of the GCR System

div (

k︷ ︸︸ ︷
0, · · · , 0, ha,ε

lj , 0, · · · ,−ha,ε
kj︸ ︷︷ ︸

l

, 0, · · · , 0) = R1, curl (ha,ε
1i , h

a,ε
2i , · · · , h

a,ε
di ) = R2,

div (

k︷ ︸︸ ︷
0, · · · , 0, κa,ε

lb , 0, · · · ,−κa,ε
kb︸ ︷︷ ︸

l

, 0, · · · , 0) = R3, curl (κa,ε
1b , κ

a,ε
2b , · · · , κ

a,ε
db ) = R4,

div (

k︷ ︸︸ ︷
0, · · · , 0, hb,ε

li , 0, · · · ,−hb,ε
ki︸ ︷︷ ︸

l

, 0, · · · , 0) = R5, curl (hb,ε
1i , h

b,ε
2i , · · · , h

b,ε
di ) = R6,

div (

k︷ ︸︸ ︷
0, · · · , 0, κb,ε

lc , 0, · · · ,−κb,ε
kc︸ ︷︷ ︸

l

, 0, · · · , 0) = R7, curl (κb,ε
1c , κ

b,ε
2c , · · · , κ

b,ε
dc ) = R8.
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Lemma (Classical Div-Curl Lemma: Murat-Tartar)

Let Ω ⊂ Rd, d ≥ 2, be open bounded. Let p, q > 1 such that 1
p + 1

q = 1.

Assume that, for ε > 0, two fields uε ∈ Lp(Ω;Rd), vε ∈ Lq(Ω;Rd)
satisfy the following:

i uε ⇀ u weakly in Lp(Ω;Rd) as ε → 0;

ii vε ⇀ v weakly in Lq(Ω;Rd) as ε → 0;

iii divuε are confined in a compact subset of W−1,p
loc (Ω;R);

iv curlvε are confined in a compact subset of W−1,q
loc (Ω;Rd×d).

Then the scalar product of uε and vε are weakly continuous:

uε · vε −→ u · v in the sense of distributions.

*Various variations of this lemma for different applications/purposes:

Robbin-Rogers-Temple (1987)

Kozono-Yanagisawa (2009)

Cont-Dolzmann-Müller (2011)

· · ·
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Observations: Div-Curl Structure of the GCR System

div (

k︷ ︸︸ ︷
0, · · · , 0, ha,ε

lj , 0, · · · ,−ha,ε
kj︸ ︷︷ ︸

l

, 0, · · · , 0) = R1, curl (ha,ε
1i , h

a,ε
2i , · · · , h

a,ε
di ) = R2,

div (

k︷ ︸︸ ︷
0, · · · , 0, κa,ε

lb , 0, · · · ,−κa,ε
kb︸ ︷︷ ︸

l

, 0, · · · , 0) = R3, curl (κa,ε
1b , κ

a,ε
2b , · · · , κ

a,ε
db ) = R4,

div (

k︷ ︸︸ ︷
0, · · · , 0, hb,ε

li , 0, · · · ,−hb,ε
ki︸ ︷︷ ︸

l

, 0, · · · , 0) = R5, curl (hb,ε
1i , h

b,ε
2i , · · · , h

b,ε
di ) = R6,

div (

k︷ ︸︸ ︷
0, · · · , 0, κb,ε

lc , 0, · · · ,−κb,ε
kc︸ ︷︷ ︸

l

, 0, · · · , 0) = R7, curl (κb,ε
1c , κ

b,ε
2c , · · · , κ

b,ε
dc ) = R8.

Weak Convergence: Div-Curl ⇒ ha,ε
lj hb,ε

ki − ha,ε
kj h

b,ε
li ⇀ ha

ljh
b
ki − ha

kjh
b
li,

κa,ε
kb κ

b,ε
lc − κa,ε

lb κb,ε
kc ⇀ κa

kbκ
b
lc − κa

lbκ
b
kc,

κa,ε
kb h

b,ε
li − κa,ε

lb hb,ε
ki ⇀ κa

kbh
b
li − κa

lbh
b
ki

in the sense of distributions as ε → 0
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Compensated Compactness Theorem on Banach Spaces
H – Hilbert space over field K with H = H∗

Y,Z – Reflexive Banach space over K with dual spaces Y ∗, Z∗

Theorem (Chen-S. Li: J. Geometric Analysis, 2018)

Let S : H → Y with adjoint operator S† : Y ∗ → H,
T : H → Z with adjoint operator T † : Z∗ → H satisfy

Orthogonality: S ◦ T † = 0, T ◦ S† = 0;

For some Hilbert space H so that H embeds compactly into H, there exists
C > 0 such that, for all h ∈ H,

∥h∥H ≤ C
(
∥Sh∥Y + ∥Th∥Z + ∥h∥H

)
.

Assume that two sequences {uε}, {vε} ⋐ H satisfy

uε ⇀ ū and vε ⇀ v̄ in H as ε → 0;

{Suε} is pre-compact in Y , and {Tvε} is pre-compact in Z.

Then, after passing to subsequences if necessary,

⟨uε,vε⟩H −→ ⟨ū, v̄⟩H as ε → 0.

=⇒ Chen-Li (2018): Intrinsic Div-Curl Lemma on Riemannian Manifolds

*Chen-Giron (2024): Non-abelian Div-Curl Lemma
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Global Weak Rigidity of the Gauss-Codazzi-Ricci Equations

Theorem (Chen-S. Li: J. Geometric Analysis, 2018)

Let (M, g) be a Riemannian manifold with g ∈ W 1,p for p > 2.

Let (hε,κε) be a sequence of solutions (∼ coefficients of the 2nd
fundamental form and the connection form on the normal bundle)
in Lp of the GCR equations in the distributional sense.

Assume that, for any submanifold K ⋐ M , there exists CK > 0
independent of ε such that

sup
ϵ>0

{
∥hε∥Lp(K) + ∥κε∥Lp(K)

}
≤ CK .

=⇒ When ε → 0, there exists a subsequence of (hε,κε) that
converges weakly in Lp to a pair (h,κ) that is still a weak
solution of the GCR equations.

=⇒ Global Weak Rigidity of Isometric Immersions in W 2,p

*Globally, independent of local coordinates

*No restriction on the Riemann curvatures and the types of PDEs

*The Cartan Formalism: Similar
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Global Weak Continuity of the Gauss-Codazzi-Ricci Eqs.

Theorem (Chen-Giron 2024)

Let (M, g) be a Riemannian manifold with g ∈ W 1,p for p > 2.

Let (hε,κε) be a sequence of solutions (∼ coefficients of the 2nd
fundamental form and the connection form on the normal bundle)
in Lp of the GCR equations in the distributional sense.

Assume that, for any submanifold K ⋐ M , there exists CK > 0
independent of ε such that

sup
ϵ>0

∥hε∥Lp(K) ≤ CK .

=⇒ There exists a refined sequence (h̃ε, κ̃ε) that are still weak
solutions of the GCR equations such that, when ε → 0,
(h̃ε, κ̃ε) converges weakly in Lp to a pair (h,κ) that is still

a weak solution of the GCR equations.

=⇒ Global Weak Rigidity of Isometric Immersions in W 2,p

*Globally, indept. of local coordinates;

*No restriction on the Riemann curvatures and the types of PDEs

*Invariance for a choice of suitable gauge to control the Full Connection Form
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Global Weak Rigidity on Manifolds
with Lower Regularity: Global Analysis

Global Weak Continuity of the Gauss-Codazzi-Ricci Equations on
Manifolds with Lower Regularity:
Chen-Li (JGA 2018), Chen-Giron (2024): Riemannian Manifolds

Chen-Li (ARMA 2021): Semi-Riemannian Mflds (e.g. Lorentzian Mflds)

*A unified intrinsic geometric approach indept. of the local coordinates.

Limiting Surfaces in Geometry: The weak limit of isometrically
immersed surfaces is still an isometrically immersed surface in Rd

governed by the GCR Eqs. for any Rijkl without sign/type restriction

Chen-Li (JGA2018, ARMA2021), Chen-Li-Slemrod (JMPA2022), Chen-Giron (2024)

Motivations and Connections:

Theory of Polyconvexity in Nonlinear Elasticity: Ball, · · ·
Intrinsic Methods in Elasticity & Nonlinear Korn Inequalities: Ciarlet, · · ·
Concentration-Compactness Principles: Lions, · · ·
Convex Integration & Flexibility: Gromov, De Lellis, Székelyhidi, · · ·
Uhlenbeck Compactness, Immersions, · · · : Chen-Giron 2024, · · ·

*Uhlenbeck 1982, Donaldson 1983, · · · , Reintjes-Temple 2020, · · ·
Book: Differential Geometry and Continuum Mechanics

By G.-Q. Chen, M. Grinfeld & R. Knops, Springer-Verlag, 2015
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Concluding Remarks

Nonlinear Partial Differential Equations
of Mixed Type, or even No Type,

naturally arise in many fundamental problems in
Fluid Mechanics, Differential Geometry
Elasticity, Materials Science, Relativity
Optimization, Dynamical Systems, ......

The solution to these fundamental problems in the areas
greatly requires a deep understanding of

Nonlinear Partial Differential Equations of
Mixed Type, esp. Elliptic-Hyperbolic Type

& Further Developments of New Mathematics.

*G.-Q. Chen: Partial Differential Equations of Mixed Type
— Analysis and Applications

Notices of the American Mathematical Society, 70 (2023), no. 1, 8–23.
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