Partial Differential Equations of Mixed Type Lecture I

Gui-Qiang G. Chen

Oxford Centre for Nonlinear PDE (OxPDE) Mathematical Institute, University of Oxford https://www.maths.ox.ac.uk/people/gui-qiang.chen

XVII ENAMA National Meeting of Mathematical Analysis & Applications Brazilian College of Higher Studies CBAE-UFRJ Rio de Janeiro, Brazil

Gui-Qiang G. Chen (Oxford)

Partial Differential Equations of Mixed Type

1/28

Linear Partial Differential Equations I

Three of the Fundamental Types: Representatives

Elliptic Equation: Laplace's Equation & Equilibrium Equation

$$\sum_{j=1}^{n} u_{x_j x_j} = 0$$

Parabolic Equation: Heat Equation

$$u_t - \sum_{j=1}^n u_{x_j x_j} = 0$$

Hyperbolic Equation: Wave Equation & Maxwell's Equation

$$u_{tt} - \sum_{j=1}^n u_{x_j x_j} = 0$$

Classification for Second-Order PDEs

Jacques Hadamard: Lectures on Cauchy's Problem in Linear Partial Differential Equations

Yale University Press, Oxford University Press, 1923

Gui-Qiang G. Chen (Oxford)

6-8 November 2024

Linear Partial Differential Equations II

Three of the Fundamental Types: Representatives

Elliptic Equation: Laplace's Equation & Equilibrium Equation

 $\overline{i=1}$

Parabolic Equation: Heat Equation

$$u_t - \sum_{j=1}^n u_{x_j x_j} = 0$$

 $\sum u_{x_j x_j} = 0$

Hyperbolic Equation: Wave Equation & Maxwell's Equation

$$u_{tt} - \sum_{j=1}^{n} u_{x_j x_j} = 0$$

Distinctions: Properties of Solutions

- Infinite \iff Finite Speed of Propagation of Solutions
- Gain \iff Loss of Regularity of Solutions
- • • • •

Linear Partial Differential Equations III

Classification for 2-D Const. Coeff. 2nd Order PDEs

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} = f$$

Let $\lambda_1 \leq \lambda_2$ be two eigenvalues of the 2 × 2 symmetric matrix $(a_{ij})_{2\times 2}$. Elliptic: $(a_{ij})_{2\times 2} > 0 \iff \lambda_1 \lambda_2 > 0 \iff a_{12}^2 - a_{11}a_{22} < 0$ Hyperbolic: $(a_{ij})_{2\times 2} < 0 \iff \lambda_1 \lambda_2 < 0 \iff a_{12}^2 - a_{11}a_{22} > 0$

• Classification of Conic Sections and Quadratic Forms:

 $a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2$

Quadratic Curves: (i) Parabolas, (ii) Ellipses, (iii) Hyperbolas

• Fourier Transform: $(a_{11}\xi^2 + 2a_{12}\xi\eta + a_{22}\eta^2)\hat{u} = -\hat{f}$

Gui-Qiang G. Chen (Oxford)

Linear Partial Differential Equations IV

• General Second-Order Equations of Mixed Type

 $a_{11}(x,y)u_{xx} + 2a_{12}(x,y)u_{xy} + a_{22}(x,y)u_{yy} = 0$

Let $\lambda_1(x,y)$ and $\lambda_2(x,y)$ be two eigenvalues of $(a_{ij}(x,y))_{2 \times 2}$

Mixed Hyperbolic-Elliptic Type: $\lambda_1(x,y)\lambda_2(x,y)$ changes sign

• Fundamental Equations of Mixed Type

Lavrentyev-Bitsadze Equation: $u_{xx} + sign(x)u_{yy} = 0$

Tricomi Equation: $u_{xx} + xu_{yy} = 0$ (hyperbolic degeneracy at x = 0) **Keldysh Equation:** $xu_{xx} + u_{yy} = 0$ (parabolic degeneracy at x = 0)

- * Euler-Poisson-Darboux Equation, Beltrami Equation, …
- * Fuchs-type PDEs, ····

Gui-Qiang G. Chen (Oxford) Partial Differential Equations of Mixed Type 6–8

Linear Fundamental Equations of Mixed Type I

Lavrentyev-Bitsadze Equation:

 $\partial_{xx}u + \operatorname{sign}(x)\partial_{yy}u = 0$

• When $x > 0 \Longrightarrow$ Laplace equation

$$\partial_{xx}u + \partial_{yy}u = 0$$

• When $x < 0 \Longrightarrow$ Wave equation

$$\partial_{xx}u - \partial_{yy}u = 0$$

• Transition boundary x = 0 between the Laplace equation and the wave equation:

Jump discontinuous coefficient sign(x).

Gui-Qiang G. Chen (Oxford) Partial Differential Equations of Mixed Type 6–8 November 2024

Linear Fundamental Equations of Mixed Type II

Tricomi Equation:

$$u_{xx} + xu_{yy} = 0.$$

• When $x > 0 \implies$ Elliptic equation

$$u_{xx} + xu_{yy} = 0, \qquad x > 0.$$

• When $x < 0 \implies$ Hyperbolic equation

$$u_{xx} - |x|u_{yy} = 0, \qquad x < 0.$$

• Hyperbolic degeneracy at x = 0: The two characteristic families coincide perpendicularly to line x = 0. Its degeneracy is determined by the Elliptic or Hyperbolic Euler-Poisson-Darboux Equation:

$$u_{ au au} \pm u_{yy} + rac{eta}{ au} u_{ au} = 0$$
 for $\pm x > 0$ $(eta = rac{1}{3}, \, au = rac{2}{3} |x|^{rac{3}{2}}).$

Linear Fundamental Equations of Mixed Type III

Keldysh Equation:

$$xu_{xx} + u_{yy} = 0.$$

• When $x > 0 \Longrightarrow$ Elliptic equation

$$xu_{xx} + u_{yy} = 0, \qquad x > 0.$$

• When $x < 0 \Longrightarrow$ Hyperbolic equation

$$|x|u_{xx} - u_{yy} = 0, \qquad x < 0.$$

 Parabolic degeneracy at x = 0: The two characteristic families are quadratic parabolas lying in half-plane x < 0 and tangential at contact points to the degenerate line x = 0:

$$u_{\tau\tau} \pm u_{yy} + rac{eta}{ au} u_{ au} = 0$$
 for $\pm x > 0$ $(eta = -rac{1}{4}, \, au = rac{1}{2}|x|^{rac{1}{2}}).$

8 / 28

Nonlinear PDEs of Mixed Type: Simplest Model

$$u_{xx} + uu_{yy} = 0.$$

- When $u > 0 \Longrightarrow$ Elliptic equation
- When $u < 0 \implies$ Hyperbolic equation
- Transition boundary between the elliptic and hyperbolic phases: u(x, y) = 0. It is a free boundary in general!

This is a nonlinear version of the linear PDEs of mixed type:

Tricomi Equation: $u_{xx} + xu_{yy} = 0$ (u(x,y) = x near x = 0)Keldysh Equation: $xu_{xx} + u_{yy} = 0$ $(u(x,y) = \frac{1}{x} \text{ near } x = 0)$

*Relation: The Transonic Small Disturbance Equation in fluid dynamics:

$$u_{xx} + (uu_y)_y = 0.$$

J. Hunter, C. Morawetz, B. Keyfitz, S. Canic, G. Lieberman, · · · .

Gui-Qiang G. Chen (Oxford)

14 / 28

Nonlinear PDEs of Mixed Type and Airfoil Problems I

Steady Euler equations for Potential Flow:

$$abla \cdot (
ho(
abla arphi)
abla arphi) = 0, \qquad \mathbf{x} = (x, y) \in \mathbb{R}^2$$

or in the equivalent form:

 $\begin{cases} \nabla_{\mathbf{x}} \cdot (\rho(\mathbf{v})\mathbf{v}) = 0, \\ \nabla_{\mathbf{x}} \times \mathbf{v} = 0. \end{cases}$

Flow velocity $\mathbf{v} := (u, v) = \nabla \varphi = (\varphi_x, \varphi_y)$, Flow speed $q = \sqrt{u^2 + v^2} = |\mathbf{v}|$.

For a γ -law gas, $p = p(\rho) = \rho^{\gamma}/\gamma, \gamma > 1$, is the normalized pressure. Then the Bernoulli's law is:

$$\rho = \rho(\mathbf{v}) := \left(1 - \frac{\gamma - 1}{2} |\mathbf{v}|^2\right)^{\frac{1}{\gamma - 1}}.$$

Define $c = \sqrt{1 - \frac{\gamma - 1}{2}q^2}$ (sonic speed), $q_{\rm cr} :\equiv \sqrt{\frac{2}{\gamma + 1}}$ (critical speed).

We can rewrite Bernoulli's law in the form:

$$q^2 - q_{
m cr}^2 = rac{2}{\gamma + 1} \left(q^2 - c^2
ight).$$

Nonlinear PDEs of Mixed Type and Airfoil Problems II

$$(c^2 - u^2)\varphi_{xx} - 2uv\varphi_{xy} + (c^2 - v^2)\varphi_{yy} = 0.$$

The characteristic equation is:

$$(c^{2} - u^{2})\lambda^{2} - 2uv\lambda + (c^{2} - v^{2}) = 0$$

with eigenvalues:

$$\lambda = \frac{uv \pm c\sqrt{u^2 + v^2 - c^2}}{c^2 - u^2}.$$

Thus the equation is:

- Hyperbolic when $u^2 + v^2 > c^2$ (supersonic)
- Elliptic when $u^2 + v^2 < c^2$ (subsonic)
- Transition boundary: $u^2 + v^2 = c^2$ (sonic)

Notice that Bernoulli's law in the form: $q^2 - q_{cr}^2 = \frac{2}{\gamma+1} (q^2 - c^2)$. \implies Then the flow is subsonic (elliptic) when $q < q_{cr}$, sonic (degenerate state) when $q = q_{cr}$, supersonic (hyperbolic) when $q > q_{cr}$.

Gui-Qiang G. Chen (Oxford)

Nonlinear PDEs of Mixed Type and Airfoil Problems III

 $\nabla \cdot (\rho(\nabla \varphi) \nabla \varphi) = 0, \qquad \mathbf{x} \in \Omega, \, v_{\infty} = 0.$

Obstacle Boundary $\partial \Omega_1$: Solid curve in (a); Solid closed curve in (b). **Far-field Boundary** $\partial \Omega_2$: Dashed line segments in both (a) and (b). **Boundary conditions on the obstacle** $\partial \Omega$:

 $\begin{cases} \nabla \varphi \cdot \mathbf{n} = 0 & \text{ on } \partial \Omega_1, \\ \text{Consistent far-field boundary conditions on } \partial \Omega_2, \end{cases}$

where **n** is the unit normal pointing into the flow region on $\partial\Omega$. In case (b), the circulation about the boundary $\partial\Omega_2$ is zero.

Nonlinear PDEs of Mixed Type and Airfoil Problems VI: Singularities

- Stagnition: Subsonic phase
- Sonic states: Transition between elliptic and hyperbolic phase

Subsonic flow: Bers, Shiffman, Serrin, Finn, Gilbarg, Dong,

Subsonic-sonic flow: Chen-Dafermos-Slemrod-Wang (CMP 2007) Compensated Compactness Framework Compactness and Existence

- Cavitation: Supersonic phase
- Shock waves, rarefaction waves: Supersonic-sonic phase Transonic phase

Morawetz Problem for Steady Potential Flow

Develop a compensated compactness framework such that a viscous approximate problem can be deigned in the form:

$$\begin{aligned} \nabla_{\mathbf{x}} \cdot (\rho(\mathbf{v}^{\varepsilon})\mathbf{v}^{\varepsilon}) &= \varepsilon V_1^{\varepsilon} \\ \nabla_{\mathbf{x}} \times \mathbf{v}^{\varepsilon} &= \varepsilon V_2^{\varepsilon}, \end{aligned}$$

with careful choice of the viscosity terms V_1^{ε} and V_2^{ε} , so that the corresponding viscous approximate solutions \mathbf{v}^{ε} satisfy the compactness framework, which yields the convergence to a solution of the transonic flow problem.

Theorem (Morawetz 1985, 1995, 2004)

If viscous approximate solutions $\mathbf{v}^{arepsilon}(\mathbf{x})$ satisfy

- (i) Uniformly away from Cavitation: $|\mathbf{v}^{\varepsilon}(\mathbf{x})| \leq q_{*} < q_{\mathrm{cav}} < \infty$.
- (ii) Uniformly bounded flow-angle function: $-\infty < \theta_* \le \theta^{\varepsilon}(\mathbf{x}) \le \theta^* < \infty$.
- (iii) Uniformly away from Stagnation: $|\mathbf{v}^{\varepsilon}(\mathbf{x})| \geq \delta_0 > 0.$

Then there exists a subsequence of $\mathbf{v}^{\varepsilon}(\mathbf{x})$ converging strongly to a solution of the transonic flow problem.

Theorem (Chen-Slemrod-Wang: ARMA 2008, $\gamma \in (1,3)$)

- Design a suitable viscous approximate problem.
- Assumptions (i)-(ii) can be removed.

Gui-Qiang G. Chen (Oxford)

Partial Differential Equations of Mixed Type

6-8 November 2024

Morawetz Problem for Steady Potential Flow: $\gamma \geq 3$

Case: $\gamma \ge 3$: cavitation can not be avoided, unlike the case $\gamma \in (1,3)$. Case $\gamma = 3$ corresponds to case $\gamma = \frac{5}{3}$ for the isentropic Euler equations. Entropy-Entropy Flux Pairs (Q_1, Q_2) :

$$\nabla_{\mathbf{x}} \cdot (Q_1, Q_2) = -\Phi_{\theta} V_1 + \frac{q^2}{c^2 - q^2} \Phi_{\rho} V_2$$

with $\frac{c^2}{\rho^2 q^2} \Phi_{\theta\theta} + \left(\frac{q^2}{c^2 - q^2} \Phi_{\rho}\right)_{\rho} = 0.$

Then (Q_1, Q_2) is determined the generator H via the Loewner-Morawetz relation: $Q_1 = \rho q H_\mu \cos \theta - q H_\theta \sin \theta, \qquad Q_2 = \rho q H_\mu \sin \theta + q H_\theta \cos \theta.$

Generator *H* satisfies the generalized **Tricomi-Keldysh equation**:

$$H_{\mu\mu} - \frac{M^2 - 1}{\rho^2} H_{\theta\theta} = 0,$$

where $M = \frac{q}{c}$ is the Mach number and μ is determined by $\mu'(\rho) = M^{-2}$. The relation between the generator H and Φ is:

$$\rho H_{\rho\theta} - H_{\theta} = -\Phi_{\theta}, \qquad H_{\mu} + \frac{1}{\rho}H_{\theta\theta} = \frac{q^2}{c^2 - q^2}\Phi_{\rho}.$$

Morawetz Problem for Steady Potential Flow: $\gamma=3$

Theorem (Chen-Giron-Schulz 2024: Compensated Compactness Framework)

Let $\{\mathbf{v}^{\varepsilon}\}_{\varepsilon>0} \subset L^{\infty}(\Omega)$ be a sequence of function satisfying (i) There exists $q^* \in (q_{\rm cr}, q_{\rm cav})$, indept of $\varepsilon > 0$, such that

 $q_{
m cr} < q_* \le |\mathbf{v}(\mathbf{x})| \le q_{
m cav}$ $a.e. \ \mathbf{x} \in \Omega.$

(ii) There exist $\theta_*, \theta^* \in \mathbb{R}$, indept of $\varepsilon > 0$, such that

 $\theta_* \leq \theta^{\varepsilon}(\mathbf{x}) \leq \theta^* \qquad a.e. \ \mathbf{x} \in \Omega.$

(iii) For any entropy-entropy flux pair Q,

 $\{\nabla_{\mathbf{x}} \cdot \mathbf{Q}(\mathbf{v}^{\varepsilon})\}_{\varepsilon > 0} \quad \text{is pre-compact in } H^{-1}_{\text{loc}}.$ $\implies \text{there exists a subsequence of } \mathbf{v}^{\varepsilon}(\mathbf{x}) \text{ converging in } L^p_{\text{loc}} \text{ for all } p \in [1,\infty).$

The choice of the viscosity terms V_1^{ε} and V_2^{ε} :

$$V_1^{\varepsilon} = \nabla_{\mathbf{x}} \cdot \left((1 - \frac{c(\rho(\mathbf{v}^{\varepsilon}))}{|\mathbf{v}^{\varepsilon}|^2}) \nabla_{\mathbf{x}} \rho(\mathbf{v}^{\varepsilon}) \right),$$

$$V_2 = \Delta_{\mathbf{x}} \theta(\mathbf{v}^{\varepsilon}).$$

Morawetz Problem for Steady Potential Flow: $\gamma = 3$

Theorem (Chen-Giron-Schulz 2024: Compensated Compactness Framework)

Let $\{\mathbf{v}^{\varepsilon}\}_{\varepsilon>0}\subset L^{\infty}(\Omega)$ be a sequence of function satisfying

(i) There exists $q^* \in (q_{\rm cr}, q_{\rm cav})$, indept of $\varepsilon > 0$, such that

 $q_{\rm cr} < q_* \le |\mathbf{v}^{\varepsilon}(\mathbf{x})| \le q_{\rm cav}$ a.e. $\mathbf{x} \in \Omega$.

(ii) There exist $\theta_*, \theta^* \in \mathbb{R}$, indept of $\varepsilon > 0$, such that

 $\theta_* \leq \theta^{\varepsilon}(\mathbf{x}) \leq \theta^* \qquad a.e. \ \mathbf{x} \in \Omega.$

(iii) For any entropy-entropy flux pair \mathbf{Q} ,

 $\{\nabla_{\mathbf{x}} \cdot \mathbf{Q}(\mathbf{v}^{\varepsilon})\}_{\varepsilon > 0}$ is pre-compact in H_{loc}^{-1} .

⇒ there exists a subsequence of $\mathbf{v}^{\varepsilon}(\mathbf{x})$ converging in L_{loc}^{p} for all $p \in [1, \infty)$.

• Conditions (i)-(iii) can be verified by the identification of the invariant regions for the viscous solutions for the supersonic incoming flow and the careful analysis of the behaviors of the entropy generator H as solutions of the Tricomi equations that are singular at cavitation.

• Compactness of exact solution sequences containing cavitation.

• Weak Continuity of the steady Euler equations with cavitation.

 Convergence of the viscous approximate solutions with cavitation ··· Gui-Qiang G. Chen (Oxford) Partial Differential Equations of Mixed Type 6–8 November 2024 22/28

Weak Convergence and Weak Continuity

Recall: For a sequence $\mathbf{v}^{\varepsilon} : \Omega \to \mathbb{R}^m$ bounded in $L^{\infty}(\Omega)$, there exists a subsequence (still denoted) \mathbf{v}^{ε} and a function $\mathbf{v} \in L^{\infty}(\Omega)$ such that $\mathbf{v}^{\varepsilon} \stackrel{*}{\longrightarrow} \mathbf{v}$ in $L^{\infty}(\Omega)$:

$$\int_{\Omega} \mathbf{v}^{\varepsilon} g \, \mathrm{d} \mathbf{x} \to \int_{\Omega} \mathbf{v} g \, \mathrm{d} \mathbf{x} \qquad \text{ as } \varepsilon \to 0,$$

for each $g \in L^1(\Omega)$.

For a continuous function $f \in C(\mathbb{R}^m)$, $f(\mathbf{v}^{\varepsilon})$ is uniformly bounded in $L^{\infty}(\Omega;\mathbb{R}^m)$ so that

$$f(\mathbf{v}^{\varepsilon}) \xrightarrow{*} \bar{f}.$$

The question is:

$$\bar{f}(\mathbf{x}) = f(\mathbf{v}(\mathbf{x}))?$$

The answer is: NO, in general.

23 / 28

Example: Weak Convergence \neq Weak Continuity

Consider the sequence: $u^{\varepsilon} = \cos(\frac{x}{\varepsilon})$. For any test function $\phi \in C_{c}^{1}(\mathbb{R})$,

$$\int_{\mathbb{R}} \cos(\frac{x}{\varepsilon}) \, \phi(x) \, \mathrm{d}x = -\varepsilon \int_{\mathbb{R}} \sin(\frac{x}{\varepsilon}) \, \phi'(x) \, \mathrm{d}x \to 0 \qquad \text{as } \varepsilon \to 0,$$

since $\int_{\mathbb{R}} \sin(\frac{x}{\varepsilon}) \phi'(x) dx$ is bounded.

However, for

$$(u^{\varepsilon})^2 = \cos^2(\frac{x}{\varepsilon}) = \frac{1}{2} \left(1 + \cos(\frac{2x}{\varepsilon}) \right),$$

we have

$$\int_{\mathbb{R}} \cos^2(\frac{x}{\varepsilon}) \,\phi(x) \,\mathrm{d}x = \frac{1}{2} \int_{\mathbb{R}} \phi(x) \,\mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}} \cos(\frac{2x}{\varepsilon}) \,\phi(x) \,\mathrm{d}x \to \frac{1}{2} \int_{\mathbb{R}} \phi(x) \,\mathrm{d}x.$$

Therefore,

$$u^{\varepsilon}(x) = \cos(\frac{x}{\varepsilon}) \xrightarrow{*} u = 0,$$

but

$$(u^{\varepsilon})^2(x) = \cos^2(\frac{x}{\varepsilon}) \xrightarrow{*} \frac{1}{2} \neq u^2 = 0.$$

Gui-Qiang G. Chen (Oxford)

Lemma (Classical Div-Curl Lemma: Murat-Tartar)

Let $\Omega \subset \mathbb{R}^d, d \geq 2$, be open bounded. Let p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Assume that, for $\varepsilon > 0$, two fields $\mathbf{u}^{\varepsilon} \in L^p(\Omega; \mathbb{R}^d)$, $\mathbf{v}^{\varepsilon} \in L^q(\Omega; \mathbb{R}^d)$ satisfy the following:

- $\mathbf{u}^{\varepsilon} \rightarrow \mathbf{u}$ weakly in $L^p(\Omega; \mathbb{R}^d)$ as $\varepsilon \rightarrow 0$;
- **(b)** div \mathbf{u}^{ε} are confined in a compact subset of $W^{-1,p}_{\text{loc}}(\Omega;\mathbb{R})$;
- curl \mathbf{v}^{ε} are confined in a compact subset of $W^{-1,q}_{\text{loc}}(\Omega; \mathbb{R}^{d \times d})$.

Then the scalar product of \mathbf{u}^{ε} and \mathbf{v}^{ε} are weakly continuous:

 $\mathbf{u}^{\varepsilon} \cdot \mathbf{v}^{\varepsilon} \longrightarrow \mathbf{u} \cdot \mathbf{v}$ in the sense of distributions.

*Various variations of this lemma for different applications/purposes:

Robbin-Rogers-Temple (1987) Kozono-Yanagisawa (2009) Cont-Dolzmann-Müller (2011)

Compensated Compactness and Weak/Strong Convergence

Let $\mathbf{v}^{\varepsilon}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^m$ be a sequence of measurable functions satisfying:

- \mathbf{v}^{ε} is uniformly bounded: \exists bounded set $K \in \mathbb{R}^m$ such that $\mathbf{v}^{\varepsilon}(\mathbf{x}) \in K$ a.e.
- For two vector functions $\mathbf{Q}^j = (Q_1^j, Q_2^j)$, j = 1, 2,

 $\{\nabla_{\mathbf{x}} \cdot \mathbf{Q}_j(\mathbf{v}^{\varepsilon})\}_{\varepsilon > 0}$ is pre-compact in H_{loc}^{-1} .

 \implies There exists a subsequence (still denoted) \mathbf{v}^{ε} and a family of Young measures

 $\nu_{\mathbf{x}} : \Omega \to \operatorname{Prob}(\mathbb{R}^m) \quad \text{with } \operatorname{supp} \nu_{\mathbf{x}} \subset \overline{K},$

such that

(i) For any continuous function $f(\cdot)$, the weak-star limit has the following Young measure representation:

 $w^* - \lim f(\mathbf{v}^{\varepsilon}) = \langle \nu_{\mathbf{x}}(\lambda), f(\boldsymbol{\lambda}) \rangle = \int_{\mathbb{R}^m} f(\boldsymbol{\lambda}) d\nu_{\mathbf{x}}(\lambda),$

(ii) The Young measure ν_x is governed by the following commutativity relation with respect to the vector functions \mathbf{Q}^j , j = 1, 2:

 $\langle \nu_{\mathbf{x}}, Q_1^1 Q_2^2 - Q_2^1 Q_1^2 \rangle = \langle \nu_{\mathbf{x}}, Q_1^1 \rangle \langle \nu_{\mathbf{x}}, Q_2^2 \rangle - \langle \nu_{\mathbf{x}}, Q_2^1 \rangle \langle \nu_{\mathbf{x}}, Q_1^2 \rangle.$

(iii) $\mathbf{v}^{\varepsilon}(\mathbf{x}) \to \mathbf{v}(x)$ strongly if and only if $\nu_{\mathbf{x}}$ is a Dirac mass:

 $u_x = \delta_{\mathbf{v}(\mathbf{x})} \qquad a.e. \quad \text{in } \Omega.$

Reduction Problem and Entropy Analysis

Reduction Problem:

Let the Young measure (probability measure) $\nu_{\mathbf{x}}(\boldsymbol{\lambda})$ be governed by $\langle \nu_{\mathbf{x}}(\boldsymbol{\lambda}), Q_1^1(\boldsymbol{\lambda})Q_2^2(\boldsymbol{\lambda}) - Q_2^1(\boldsymbol{\lambda})Q_1^2(\boldsymbol{\lambda}) \rangle$

 $= \langle \nu_{\mathbf{x}}(\boldsymbol{\lambda}), Q_1^1(\boldsymbol{\lambda}) \rangle \langle \nu_{\mathbf{x}}(\boldsymbol{\lambda}), Q_2^2(\boldsymbol{\lambda}) \rangle - \langle \nu_{\mathbf{x}}(\boldsymbol{\lambda}), Q_2^1(\boldsymbol{\lambda}) \rangle \langle \nu_{\mathbf{x}}(\boldsymbol{\lambda}), Q_1^2(\boldsymbol{\lambda}) \rangle.$

for entropy pairs (Q_1^j, Q_2^j) , j = 1, 2, is determined by the generators H^j via the Loewner-Morawetz relation:

 $Q_1^j = \rho q H_{\mu}^j \cos \theta - q H_{\theta}^j \sin \theta, \qquad Q_2 = \rho q H_{\mu}^j \sin \theta + q H_{\theta}^j \cos \theta.$ Generators H^j are governed by the Tricomi-Keldysh-type equation:

$$H_{\mu\mu} - \frac{M^2(\mu) - 1}{\rho^2(\mu)} H_{\theta\theta} = 0, \qquad M = \frac{q}{c} - \text{Mach number}.$$

ISSUE: Is ν_x a Dirac measure?

 \implies Compactness of $\mathbf{v}^{\varepsilon}(\mathbf{x})$ in L^1 .

*Div-Curl Lemma: Murat (1978), Tartar (1979), *Young Measure Rep.: Tartar (1979), Ball (1989), Alberti-Müller (2001), Gui-Qiang G. Chen (Oxford) Partial Differential Equations of Mixed Type 6-8 November 2024

27 / 28

Nonlinear PDEs of Mixed Type and Other Steady Transonic Problems in Fluid Dynamics

Richard Courant & Kurt Friedrichs: Supersonic Flow and Shock Waves Interscience Publishers Inc.: New York. 1948.

John von Neumann: Collected Works, Vol. 6, Pergamon: New York, 1963.

Lipman Bers: Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley & Sons, Inc.: New York, 1958.

Gui-Qiang G. Chen & Mikhail Feldman: Multidimensional transonic shock waves and free boundary problems, Bulletin of Mathematical Sciences, 12 (01), 2230002, 2022.

Gui-Qiang G. Chen & Mikhail Feldman: The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjecture. Research Monograph, Princeton University Press: Princeton, 2018.