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Linear Partial Differential Equations I

Three of the Fundamental Types: Representatives
Elliptic Equation: Laplace’s Equation & Equilibrium Equation

n∑
j=1

uxjxj = 0

Parabolic Equation: Heat Equation

ut −
n∑

j=1

uxjxj = 0

Hyperbolic Equation: Wave Equation & Maxwell’s Equation

utt −
n∑

j=1

uxjxj = 0

Classification for Second-Order PDEs

Jacques Hadamard: Lectures on Cauchy’s Problem in Linear Partial
Differential Equations
Yale University Press, Oxford University Press, 1923
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Linear Partial Differential Equations II

Three of the Fundamental Types: Representatives
Elliptic Equation: Laplace’s Equation & Equilibrium Equation

n∑
j=1

uxjxj = 0

Parabolic Equation: Heat Equation

ut −
n∑

j=1

uxjxj = 0

Hyperbolic Equation: Wave Equation & Maxwell’s Equation

utt −
n∑

j=1

uxjxj = 0

Distinctions: Properties of Solutions
Infinite ⇐⇒ Finite Speed of Propagation of Solutions
Gain ⇐⇒ Loss of Regularity of Solutions
· · · · · ·

Gui-Qiang G. Chen (Oxford) Partial Differential Equations of Mixed Type 6–8 November 2024 3 / 28



Linear Partial Differential Equations III

Classification for 2-D Const. Coeff. 2nd Order PDEs

a11uxx + 2a12uxy + a22uyy = f

Let λ1 ≤ λ2 be two eigenvalues of the 2× 2 symmetric matrix (aij)2×2.

Elliptic: (aij)2×2 > 0 ⇐⇒ λ1λ2 > 0 ⇐⇒ a212 − a11a22 < 0

Hyperbolic: (aij)2×2 < 0 ⇐⇒ λ1λ2 < 0 ⇐⇒ a212 − a11a22 > 0

Classification of Conic Sections and Quadratic Forms:

a11ξ
2 + 2a12ξη + a22η

2

Quadratic Curves: (i) Parabolas, (ii) Ellipses, (iii) Hyperbolas

Fourier Transform: (a11ξ
2 + 2a12ξη + a22η

2) û = −f̂
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Linear Partial Differential Equations IV

General Second-Order Equations of Mixed Type

a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)uyy = 0

Let λ1(x, y) and λ2(x, y) be two eigenvalues of (aij(x, y))2×2

Mixed Hyperbolic-Elliptic Type: λ1(x, y)λ2(x, y) changes sign

Fundamental Equations of Mixed Type

Lavrentyev-Bitsadze Equation: uxx + sign(x)uyy = 0

Tricomi Equation: uxx + xuyy = 0 (hyperbolic degeneracy at x = 0)

Keldysh Equation: xuxx + uyy = 0 (parabolic degeneracy at x = 0)

* Euler-Poisson-Darboux Equation, Beltrami Equation, · · ·
* Fuchs-type PDEs, · · ·
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Linear Fundamental Equations of Mixed Type I

Lavrentyev-Bitsadze Equation:

∂xxu+ sign(x)∂yyu = 0

When x > 0 =⇒ Laplace equation

∂xxu+ ∂yyu = 0

When x < 0 =⇒ Wave equation

∂xxu− ∂yyu = 0

Transition boundary x = 0 between the Laplace equation and the
wave equation:

Jump discontinuous coefficient sign(x).
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Linear Fundamental Equations of Mixed Type II

Tricomi Equation:

uxx + xuyy = 0.

When x > 0 =⇒ Elliptic equation

uxx + xuyy = 0, x > 0.

When x < 0 =⇒ Hyperbolic equation

uxx − |x|uyy = 0, x < 0.

Hyperbolic degeneracy at x = 0: The two characteristic families
coincide perpendicularly to line x = 0. Its degeneracy is determined
by the Elliptic or Hyperbolic Euler-Poisson-Darboux Equation:

uττ ± uyy +
β

τ
uτ = 0 for ±x > 0 (β =

1

3
, τ =

2

3
|x|

3
2 ).
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Linear Fundamental Equations of Mixed Type III

Keldysh Equation:

xuxx + uyy = 0.

When x > 0 =⇒ Elliptic equation

xuxx + uyy = 0, x > 0.

When x < 0 =⇒ Hyperbolic equation

|x|uxx − uyy = 0, x < 0.

Parabolic degeneracy at x = 0: The two characteristic families are
quadratic parabolas lying in half-plane x < 0 and tangential at
contact points to the degenerate line x = 0:

uττ ± uyy +
β

τ
uτ = 0 for ±x > 0 (β = −1

4
, τ =

1

2
|x|

1
2 ).
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Nonlinear PDEs of Mixed Type: Simplest Model

uxx + uuyy = 0.

When u > 0 =⇒ Elliptic equation

When u < 0 =⇒ Hyperbolic equation

Transition boundary between the elliptic and hyperbolic phases:
u(x, y) = 0. It is a free boundary in general!

This is a nonlinear version of the linear PDEs of mixed type:

Tricomi Equation: uxx + xuyy = 0 (u(x, y) = x near x = 0)

Keldysh Equation: xuxx + uyy = 0 (u(x, y) = 1
x near x = 0)

*Relation: The Transonic Small Disturbance Equation in fluid dynamics:

uxx + (uuy)y = 0.

J. Hunter, C. Morawetz, B. Keyfitz, S. Canic, G. Lieberman, · · · .
Gui-Qiang G. Chen (Oxford) Partial Differential Equations of Mixed Type 6–8 November 2024 9 / 28



Airfoil Problems: Transonic flow past airfoils
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Airfoil Problems: Transonic flow past airfoils
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Airfoil Problems: Transonic flow past airfoils
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Nonlinear PDEs of Mixed Type and Airfoil Problems I

Steady Euler equations for Potential Flow:

∇ · (ρ(∇φ)∇φ) = 0, x = (x, y) ∈ R2

or in the equivalent form:®
∇x · (ρ(v)v) = 0,

∇x × v = 0.

Flow velocity v := (u, v) = ∇φ = (φx, φy), Flow speed q =
√
u2 + v2 = |v|.

For a γ-law gas, p = p(ρ) = ργ/γ, γ > 1, is the normalized pressure.
Then the Bernoulli’s law is:

ρ = ρ(v) :=
(
1− γ − 1

2
|v|2

) 1
γ−1 .

Define c =
»

1− γ−1
2 q2 (sonic speed), qcr :≡

»
2

γ+1 (critical speed).

We can rewrite Bernoulli’s law in the form:

q2 − q2cr =
2

γ + 1

(
q2 − c2

)
.
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Nonlinear PDEs of Mixed Type and Airfoil Problems II

(c2 − u2)φxx − 2uvφxy + (c2 − v2)φyy = 0.

The characteristic equation is:

(c2 − u2)λ2 − 2uvλ+ (c2 − v2) = 0

with eigenvalues:

λ =
uv ± c

√
u2 + v2 − c2

c2 − u2
.

Thus the equation is:

Hyperbolic when u2 + v2 > c2 (supersonic)

Elliptic when u2 + v2 < c2 (subsonic)

Transition boundary: u2 + v2 = c2 (sonic)

Notice that Bernoulli’s law in the form: q2 − q2cr =
2

γ+1

(
q2 − c2

)
.

=⇒ Then the flow is subsonic (elliptic) when q < qcr,
sonic (degenerate state) when q = qcr,
supersonic (hyperbolic) when q > qcr.
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Nonlinear PDEs of Mixed Type and Airfoil Problems III

∇ · (ρ(∇φ)∇φ) = 0, x ∈ Ω, v∞ = 0.

Obstacle Boundary ∂Ω1: Solid curve in (a); Solid closed curve in (b).
Far-field Boundary ∂Ω2: Dashed line segments in both (a) and (b).
Boundary conditions on the obstacle ∂Ω:®

∇φ · n = 0 on ∂Ω1,

Consistent far-field boundary conditions on ∂Ω2,

where n is the unit normal pointing into the flow region on ∂Ω.
In case (b), the circulation about the boundary ∂Ω2 is zero.

∂Ω2

(a)

Ω

∂Ω1

Ω

∂Ω2

∂Ω1

(b)
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Nonlinear PDEs of Mixed Type and Airfoil Problems VI:
Singularities

Stagnition: Subsonic phase

Sonic states: Transition between elliptic and hyperbolic phase

Subsonic flow: Bers, Shiffman, Serrin, Finn, Gilbarg, Dong, · · · · · ·

Subsonic-sonic flow: Chen-Dafermos-Slemrod-Wang (CMP 2007)

Compensated Compactness Framework
Compactness and Existence

Cavitation: Supersonic phase

Shock waves, rarefaction waves: Supersonic-sonic phase
Transonic phase

Gui-Qiang G. Chen (Oxford) Partial Differential Equations of Mixed Type 6–8 November 2024 18 / 28



Morawetz Problem for Steady Potential Flow
Develop a compensated compactness framework such that a viscous approximate
problem can be deigned in the form:®

∇x · (ρ(vε)vε) = εV ε
1 ,

∇x × vε = εV ε
2 ,

with careful choice of the viscosity terms V ε
1 and V ε

2 , so that the corresponding
viscous approximate solutions vε satisfy the compactness framework, which yields
the convergence to a solution of the transonic flow problem.

Theorem (Morawetz 1985, 1995, 2004)
If viscous approximate solutions vε(x) satisfy

(i) Uniformly away from Cavitation: |vε(x)| ≤ q∗ < qcav < ∞.

(ii) Uniformly bounded flow-angle function: −∞ < θ∗ ≤ θε(x) ≤ θ∗ < ∞.

(iii) Uniformly away from Stagnation: |vε(x)| ≥ δ0 > 0.

Then there exists a subsequence of vε(x) converging strongly to a solution of the
transonic flow problem.

Theorem (Chen-Slemrod-Wang: ARMA 2008, γ ∈ (1, 3))

Design a suitable viscous approximate problem.

Assumptions (i)–(ii) can be removed.
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Morawetz Problem for Steady Potential Flow: γ ≥ 3

Case: γ ≥ 3: cavitation can not be avoided, unlike the case γ ∈ (1, 3).
Case γ = 3 corresponds to case γ = 5

3 for the isentropic Euler equations.

Entropy-Entropy Flux Pairs (Q1, Q2):

∇x · (Q1, Q2) = −ΦθV1 +
q2

c2 − q2
ΦρV2

with c2

ρ2q2Φθθ +
(

q2

c2−q2Φρ

)
ρ
= 0.

Then (Q1, Q2) is determined the generator H via the Loewner-Morawetz relation:

Q1 = ρqHµ cos θ − qHθ sin θ, Q2 = ρqHµ sin θ + qHθ cos θ.

Generator H satisfies the generalized Tricomi-Keldysh equation:

Hµµ − M2 − 1

ρ2
Hθθ = 0,

where M = q
c is the Mach number and µ is determined by µ′(ρ) = M−2.

The relation between the generator H and Φ is:

ρHρθ −Hθ = −Φθ, Hµ +
1

ρ
Hθθ =

q2

c2 − q2
Φρ.
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Morawetz Problem for Steady Potential Flow: γ = 3

Theorem (Chen-Giron-Schulz 2024: Compensated Compactness Framework)

Let {vε}ε>0 ⊂ L∞(Ω) be a sequence of function satisfying
(i) There exists q∗ ∈ (qcr, qcav), indept of ε > 0, such that

qcr < q∗ ≤ |v(x)| ≤ qcav a.e. x ∈ Ω.

(ii) There exist θ∗, θ
∗ ∈ R, indept of ε > 0, such that

θ∗ ≤ θε(x) ≤ θ∗ a.e. x ∈ Ω.

(iii) For any entropy-entropy flux pair Q,

{∇x ·Q(vε)}ε>0 is pre-compact in H−1
loc .

=⇒ there exists a subsequence of vε(x) converging in Lp
loc for

for all p ∈ [1,∞).

The choice of the viscosity terms V ε
1 and V ε

2 :

V ε
1 = ∇x ·

(
(1− c(ρ(vε))

|vε|2
)∇xρ(v

ε)
)
,

V2 = ∆xθ(v
ε).
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Morawetz Problem for Steady Potential Flow: γ = 3

Theorem (Chen-Giron-Schulz 2024: Compensated Compactness Framework)

Let {vε}ε>0 ⊂ L∞(Ω) be a sequence of function satisfying

(i) There exists q∗ ∈ (qcr, qcav), indept of ε > 0, such that

qcr < q∗ ≤ |vε(x)| ≤ qcav a.e. x ∈ Ω.

(ii) There exist θ∗, θ
∗ ∈ R, indept of ε > 0, such that

θ∗ ≤ θε(x) ≤ θ∗ a.e. x ∈ Ω.

(iii) For any entropy-entropy flux pair Q,

{∇x ·Q(vε)}ε>0 is pre-compact in H−1
loc .

⇒ there exists a subsequence of vε(x) converging in Lp
loc for all p ∈ [1,∞).

Conditions (i)–(iii) can be verified by the identification of the invariant
regions for the viscous solutions for the supersonic incoming flow and
the careful analysis of the behaviors of the entropy generator H as
solutions of the Tricomi equations that are singular at cavitation.

Compactness of exact solution sequences containing cavitation.

Weak Continuity of the steady Euler equations with cavitation.

Convergence of the viscous approximate solutions with cavitation · · ·
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Weak Convergence and Weak Continuity

Recall: For a sequence vε : Ω → Rm bounded in L∞(Ω), there exists a
subsequence (still denoted) vε and a function v ∈ L∞(Ω) such that

vε ∗−⇀ v in L∞(Ω):∫
Ω
vε g dx →

∫
Ω
v g dx as ε → 0,

for each g ∈ L1(Ω).

For a continuous function f ∈ C(Rm), f(vε) is uniformly bounded in
L∞(Ω;Rm) so that

f(vε)
∗−⇀ f̄.

The question is:
f̄(x) = f(v(x))?

The answer is: NO, in general.
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Example: Weak Convergence ̸= Weak Continuity

Consider the sequence: uε = cos(xε ).
For any test function ϕ ∈ C1

c (R),∫
R
cos(

x

ε
)ϕ(x) dx = −ε

∫
R
sin(

x

ε
)ϕ′(x) dx → 0 as ε → 0,

since
∫
R sin(xε )ϕ

′(x) dx is bounded.

However, for

(uε)2 = cos2(
x

ε
) =

1

2

(
1 + cos(

2x

ε
)
)
,

we have∫
R
cos2(

x

ε
)ϕ(x) dx =

1

2

∫
R
ϕ(x) dx+

1

2

∫
R
cos(

2x

ε
)ϕ(x) dx → 1

2

∫
R
ϕ(x) dx.

Therefore,
uε(x) = cos(

x

ε
)

∗−⇀ u = 0,

but
(uε)2(x) = cos2(

x

ε
)

∗−⇀ 1

2
̸= u2 = 0.
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Lemma (Classical Div-Curl Lemma: Murat-Tartar)

Let Ω ⊂ Rd, d ≥ 2, be open bounded. Let p, q > 1 such that 1
p + 1

q = 1.

Assume that, for ε > 0, two fields uε ∈ Lp(Ω;Rd), vε ∈ Lq(Ω;Rd)
satisfy the following:

i uε ⇀ u weakly in Lp(Ω;Rd) as ε → 0;

ii vε ⇀ v weakly in Lq(Ω;Rd) as ε → 0;

iii divuε are confined in a compact subset of W−1,p
loc (Ω;R);

iv curlvε are confined in a compact subset of W−1,q
loc (Ω;Rd×d).

Then the scalar product of uε and vε are weakly continuous:

uε · vε −→ u · v in the sense of distributions.

*Various variations of this lemma for different applications/purposes:

Robbin-Rogers-Temple (1987)

Kozono-Yanagisawa (2009)

Cont-Dolzmann-Müller (2011)

· · ·
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Compensated Compactness and Weak/Strong Convergence

Let vε : Ω ⊂ R2 → Rm be a sequence of measurable functions satisfying:

vε is uniformly bounded: ∃ bounded set K ∈ Rm such that vε(x) ∈ K a.e.

For two vector functions Qj = (Qj
1, Q

j
2), j = 1, 2,

{∇x ·Qj(v
ε)}ε>0 is pre-compact in H−1

loc .

=⇒ There exists a subsequence (still denoted) vε and a family of Young measures

νx : Ω → Prob.(Rm) with supp νx ⊂ K̄,
such that

(i) For any continuous function f( · ), the weak-star limit has the following
Young measure representation:

w∗ − lim f(vε) = ⟨νx(λ), f(λ)⟩ =
∫
Rm

f(λ)dνx(λ),

(ii) The Young measure νx is governed by the following commutativity relation
with respect to the vector functions Qj , j = 1, 2:

⟨νx, Q1
1Q

2
2 −Q1

2Q
2
1⟩ = ⟨νx, Q1

1⟩⟨νx, Q2
2⟩ − ⟨νx, Q1

2⟩⟨νx, Q2
1⟩.

(iii) vε(x) → v(x) strongly if and only if νx is a Dirac mass:

νx = δv(x) a.e. in Ω.
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Reduction Problem and Entropy Analysis

Reduction Problem:

Let the Young measure (probability measure) νx(λ) be governed by

⟨νx(λ), Q1
1(λ)Q

2
2(λ)−Q1

2(λ)Q
2
1(λ)⟩

= ⟨νx(λ), Q1
1(λ)⟩⟨νx(λ), Q2

2(λ)⟩ − ⟨νx(λ), Q1
2(λ)⟩⟨νx(λ), Q2

1(λ)⟩.
for entropy pairs (Qj

1, Q
j
2), j = 1, 2, is determined by the generators Hj

via the Loewner-Morawetz relation:

Qj
1 = ρqHj

µ cos θ − qHj
θ sin θ, Q2 = ρqHj

µ sin θ + qHj
θ cos θ.

Generators Hj are governed by the Tricomi-Keldysh-type equation:

Hµµ − M2(µ)− 1

ρ2(µ)
Hθθ = 0, M = q

c – Mach number.

Issue: Is νx a Dirac measure?

=⇒ Compactness of vε(x) in L1.

*Div-Curl Lemma: Murat (1978), Tartar (1979) , · · · · · ·
*Young Measure Rep.: Tartar (1979), Ball (1989), Alberti-Müller (2001), · · · · · ·
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Nonlinear PDEs of Mixed Type
and Other Steady Transonic Problems in Fluid Dynamics

Richard Courant & Kurt Friedrichs: Supersonic Flow and Shock Waves
Interscience Publishers Inc.: New York. 1948.

John von Neumann: Collected Works, Vol. 6, Pergamon: New York, 1963.

Lipman Bers: Mathematical Aspects of Subsonic and Transonic Gas
Dynamics, John Wiley & Sons, Inc.: New York, 1958.

Gui-Qiang G. Chen & Mikhail Feldman: Multidimensional transonic shock
waves and free boundary problems,
Bulletin of Mathematical Sciences, 12 (01), 2230002, 2022.

Gui-Qiang G. Chen & Mikhail Feldman: The Mathematics of Shock
Reflection-Diffraction and von Neumann’s Conjecture.
Research Monograph, Princeton University Press: Princeton, 2018.
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