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Purpose of these lectures :

Informal description of some approaches to the

solution of Plateau's problem and underlying tools

Summary
1. Plateau's problem and the minimal surface equation
2. The parametric approach (Douglas , Radol
3. Integral Currents (Federer + Fleming)
4. Set/measure theoretic approach (Reifenberg , Harrison + Pugh,

revisited by De Lellis + Ghiraldin + Maggi)
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Plateau's problem
and the minimal surface equation



Plateau's problem
d-dimensional d- dim

.
Volume

Find the surface [with minial area among

those which spans a given boundary Il d-1 dimens.

in RM (or another given ambient space).

Remarks

"find =

"

prove the existence of

If surfaces are not smooth the meaning of "area,

and "spans a given boundary , should be clarified



The minimal surface equation
LetI be a solution of Plateau's problem .

Then it satisfies the Euler-Lagrange eg .
associated

to the area functional :

meaneuriature

(rectorfield) of [ Hz = 0

A surface [with Hz = 0 is called a minimal surface.



Idea of proof (everything is smooth)
Let m be vectorfield on IR" null on a[

set #(x) : = x+ +M(x) XXEIR" SteR

set [t := (2) VteR ; It is a surface for small t and Et =&[

We can compute the deviative of to area([t) at t = 0 :

d-dim
. Volume

first variation
of the area of [ a area ([t)

=0 (M(x)
· Hq()dx (x)

in direction M
d-dim

.
volume

If [ solves Plateau's problem then measure on [

t 1 area([t) has a minimum in t=o and then

0 = area ([t) /M . He VM H = 0



Proof of (t). Recall the area formula

area([t) = (stdx
Where JAt is the (tangential) Jacobian of Et :

-Gt(x) : = det (f(x))( + (x))

= 1 + t div-M(x) + O(+2)
Taylor expansion tut

Then Chow is it done ? )

area([t) = area (2) + t/g div-m + 0(t4

Finally divergence theorem on [

O

a area ([t)
t=0

=Sadiv-m = Sy . Hz +S
weak form of the first variation
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Existence I :

The parametric approach



Existence proofs
Model problem : minimize the Dirichlet functional

Eu) = Sel udx
with boundary condition M = Uc on Or

STEP 1
.

Existence of minimizer in the Soboer space HP (r)
U solves 1 = 0 in de

STEP 2
. Regularity of m Eu = 10 on @2

Proof of Step 1 .
Take a minimizing seg . (Mu) for Flu) in His

(a) (n) is bounded in HP > un Hi up to subseg . compactness

(b) inf(F(u) : neHus] = linF(un) Fu) > i minimizes Flu) on Ho
e

semicontinuity



Passing to Plateau's problem...
the scheme is the same but there are problems with

both steps /regardless of the approach)·

Regularity fails in general . There exist ↑ S
.

t
. every minimizing

seg . (En) converge to a limit surface [which is singular

Example .
In IRP2 let ↑ be parametrized by 0 :$

where y(t) : = (24,3) . Then Y
-unitdisk in singular at the origin

E : = ((z2, 23) : ZeD] CS :Wee : wi-we =O
Let [ be a "piece, of a complex surface /possibly singular) .

Then I solves Plateau's problem with T : = 02.



The parametric approach reference domain in IRA

Let [ be a surface parametrized by u : D R2. Then

det n'u

area(( = (pfu(dX
U

Let Mo : OD R"parametrize M .
Then M=U

.
ondD &[ = T

WIP D; Rh

Now F is well-defined and weakly 1
. s . c . on WIP Vpx1 (Good News !

However
, compactness does not hold for any px1 , that is,

un minimizing seg. for Fon W un is bounded in WIP

(BAD NEWS ! )



Example
Fix u : Bi= B(0,3) Rh smooth parametrization of some [.

Vaxo take Gr : B & differ s .

t
. Ge(X =XXxE &B , Ge (B(0, 1-2)) = B(0, a)

for example Ge() : = (1)
,**

Ge

with ↑
1
- E1

Set Mc : = MoGe .
Then un parametrizes [ , then Flus) = area (1).

Moreover Me
-

u(0) on B but MalaB-MOB u(0) .

constant map !

Something is wrong...



Going around lack of compactness

Reminder : geodesics connecting two points on a Riemannian

manifold are obtained by minimizing [10) :=R
while length is F10 : = 1

.

101 . How comes ?

A similar trick works in dimension d = 2
.

Let E(u) : = Spal up . Then

F(u) = Syju =20
= holds iff

a Su2
= holds iff

=



Lemma 1
. Flul -Elu) and = holds iff &Uuf U ,

thatsi

u(X) is a conformal matrix XXEB, that is, u is a conformal map.

Theorem 2 (Lichtenstein . Given u :B R"there exists 5 :5

differ s .
t

.

: = 106 is conformal . In particular F(m) = E(n) ·

Corollary 3 .
Let it minimize Elu) withMo reparam . of No.

Then i minimizes F(u) and is conformal

Proof .

Vu : Tu = F(n) = E(m) (i) = F(u)

# invariant Theor
.
2 Lemma1

under reparam.

And for u= u we get Flu)Elu) Flu) i conformal



Douglas-Radó approach area functional Dirichlet functional

You find a minimizer of F(u) by minimizing ECu) on

HP(B , R2) with the constraint Ma reparam . of No.
The minimizer i exists, is conformal and then harmonic.

Remarks !
· i isNot injective -T

· i is Not an embedding .

Ex : (z) : = (22, z3) , zeBCC

Accordingly the surface [ := u(5) is not regular.



This approach works only if d = 2 and the

parametrization domain is the disk.

What is missing in the other cases is lichtenstein theorem

In dimension d+ 2 conformal maps are scarce !
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ExistenceI : Integral Currents



What do we need/want ?

We start from the space X of regular d-dimensional surfaces in R"

The key to existence is the construction of a suitable

compactification * of X that will play the role of the

Soboev space HP in the parametric approach .

"Suitable
, means that the following properties hold :

1 "Compactness Given a seg . ([n) <X such that

GEn = ↑ fixed

area([n) <to "area"d-dimen .

volume,

Then ([n) converges up to subseg .
to some [ET and

02 = M



2 "Semicontinuity If In [in & then

· Ciminf area ([n) areal

3 "Density of X ..
V [e J ([n) < X s

.

t
.

· In [ and area ([n) area (2).

Watch out ! We need to construct ↓ but also extend to

the motions of area and boundary !!

Why 3 ?



The space IP(R4) of d-dimensional integral currents in R

satisfies all these requirements .

A LM OS T

· 14 (RG) is a compactification of oriented surfaces .

· It is not clear if regular oriented surfaces are dense
.

But at least polyhedral complexes are

Construction plan
Hausdorff measure

· Rectiable sets

· Rectiable currents
· Boundary and integral currents
Statements of main results



Hausdorff measure
or X metric space

even not integer
Given do

,
the d-dimensional Hausdorff measure of ECRh is

(t
+
(E) : = Sup((t)

where

H5(E) := sup) (diam(i)): (Ei) countable covero!with diam (Ei) S Un

and Xd : = volume of unit ball in RP.

Remarks

·H is an outer meaure
,
Borel sets are H measurable

The factor implies that H = usual volume measure

on every d-dimensional surface [in
R"



· The setEi in the covering can be taken open/closed/convex
and even balls if EC d-dim

. surface

The Hausdorff dimension of E = dimp(E) is the unique
number s .

t.

H4() = [cim
disjoint union !

Let E be compact and self-similar, e .g., E=Uti
with Ei = copy of E scaled by X,

rotated and translated
.

Then
di= dimp(E) =

logn

log(1/X)

Hint
.
E = [Ei =+ H

+
(t) = [H"((i) = NX++(E) = 1 = NX ...

More precisely 0 H
*
(E) +.



Let Kybe the standard Cantor set .
Then dimp(ke) = 189

· Let Ke be the following set of Cantor type

Y

y = f(x) ·
X

Then dim (Kel = 1 and 0 <H (k2 + 0 .

However HK21/1 = 0 for every curve ↑CI of classe

(Thus K2 is an example of 1-purely unrectifiable set.

Proof .

Let l = graph(f) and let p be the proj . on X axis.

Then f((k21 +) = (1 + (5)2kx = 0

Px(Kzt has measure o



Rectifiable sets

A set EcRV with H
*
(6)7 + o is d-rectifiable if = di

where 14([o) = 0 and for i o
,
EiCSid-dimen . surface

o classe? E is O-rectifiable if it is finite .

Remarks

Not the usual definition ,
but equivalent in R.

· The set K2 in prev .

slide is 7 finite but not 1-rectifiable .

· Rectifiable sets can be quite "masty ,
even dense in R .

Take
↳

for example E :T - ,

Si where Si is a d-dimen-disk with

radius Vi := z" and center Xi S
.

t
. [Xi] is dense in R

· Do we need such "awful , objects ?



Tangent planes
Let E be d-rectifiable. Then for Ho-a .

e
.

xEE there exists

an approximate d-dimensional tangent plane TxE .

That is
,
Vexo

(tP(EMB(x,r)12(a)) vard ; (P(EMB(x
, r)1(2())) ra asr o

where (18) is the come

3(2) = 2(X
,Txt , 2) : = x + \hER : dist(n ,TxE) < 14/ sing]

2(2) = 2(x
, Txt , 2)

Tx
X

E f
E B(x, r)

oreover TxE = TySi for Hae . XeEnSi and i = 1
,
2, ...



Orientation of planes
LetV be a d-plane inR and let (e1, ..., ed) , (el , ...,e)
be orthonormal bases of V .

We say that (e1 , ..., ed) and (el, ..., ed) induce the same

dX
orientation on V if the change-of-basis matrix MER

satisfies det Myo. We write (e1 , ..., ed) ~ (el , ...,e)

equivalence relation

22 Er 22

Example : ~ ~

2 22 21

Equivalence classes are (represented by) simple d-vectors
with norm 1

,
and denoted by ex...., ed



Corectors & differential forms
A d-covector on R is a function :mimes R such tha

(i) x is linear in each variable ;

(ii) a is alternating : Vifj XVs,...,VERA swapping v and by gives

&, Vi...., 8j , ...

- &, 8j ...., Vi , ...

Important : from (1) and (ii) it follows that

(21 , ..., ed) ~ (ei , ..., eg) = a(21 ,
. .

., ed) - a(ei , ...,e)

Thus we simply write <: ex/ ...1 ed for ales, ..., ed)

Adeform on R" is a map W : XER"1 WE d-corector on RM



Orientation of rectifiable sets (and surfaces)

Let E be d-rectifiable. An orientation of E is a map

2 : xet1 2 (x) / ... / ed(x) orientation of TE

If E is a regular surface ,
2 is usually required to be continuous

We can integrate d-forms of oriented d-dimen . surfaces :

Sw = Sgw(x) : 2g(x)d7)
*

(x)
orientation of S

· It's the "right thing ,
to do because of stokes' Theorem :

~ Sog = Igdw
where dw is the differential of ww

= Widi
dwi
= di dj x



Rectifiable currents

A d-dimensional rectifiable current inR" is a triple T= E
, z ,

m where

E is a d-rectifiable set
,

=21x ... Ned is an orientation of E,
me LP(E

, (P) is a multiplicity function

Why do we need multiplicity ?

T has integral multiplicity if m takes values in I
-essentiallydisjoint

T is polyhedral if I is a finite union of d-dim . simplexes So
and 2 and m are constant on each Si.



Integration of forms on currents

Given a bounded d-form W on R2
,
the integral of won T is

T(W) : = E w() ; [(x) m(x)dit
*
(x)

In the background : definition of abstract currents as

linear functionals on forms (of class EC)

Convergence of currents

We say that Thura- if Thu T(W) VW of classe

Basically convergence in the sense of distributions

· There are other notions of convergence but ...



Boundary

Given a d-dim
. current T and a (d-1) - dim .

Current U
,

we

say that U is the boundary of T ,
U =&

T

, if

V(w) = T(dw) Ve of class 2

Soriented regular surface - OlS
i <s ,

17 = [OS , Zes , 17 by Stokes' Thm.

In T &In &T (stability of boundary)

Question : what is /E ,
2

, 1] if E esere
,

?

We need orientation to integrate forms ,
which we need to

define the boundary Ot ,
and convergence.



Mass

The mass of T is

M(T) : = midf =

Supe
· M(T) = 7

*
(E) if m = # 1 a

.
e

.

MM(T) is lower semicontinuous inT.

· M(T) can be defined also for abstractT.

Mass is the desired extension of the area functional !!



ntegral currents

A rectifiable d-current T= E
,
z

,
m is integral if :

there exists a rectif . (d-1) -current U= E,/m s
.

t
.

OT = U ;

both T andU have integral multiplicity.

CompactnessTheorem Federer + Fleming

Let (Tn) be a sequence of d-dim . integral currents in R S .

T.

(i) M(Tn) &C < +o ;

(ii) MM(OTn) 1 ( < +o .

Then (Th) converge up to subseq .
to some integral current

T

.

Corollary .

Existence of an integral currentT that minimizes

M(T) under the constraint &T = N.



Remarks

Proofs of F&F Thm
.

are I based on resuts from Functional Analysis.

Given a sequence (Tu) of rectifiable currents with rectifiable

boundaries St
. (i)

,
(ii) hold,

then the limit of In may be NOT

rectifiable . (In F&F Thm
.

it is important thatIn are integral .)

Consider indeed the following 1. currents in R2 :

Th : = En
,
e

,
In with In

Q
and e:=

1n

1

Then M(Tn) = 1
,
M(OTn) = 2 An

,
and

Tnw) = (w( :e
not a rectifiable current !



Given a sequence (Tu) of integral currentsS .t
. only (1) holds,

then the limit of In may be NOT rectifiable.

Consider indeed the following 1-currents in R2 :

Q
Th : = En

,
e

,
In with In and ei=

1n

-1

n2

Then M(Tn) = 1
,
M(OTn) = 22 Xn

,
and

Tnw) = Jw( :edn(wied
same as before

not a rectifiable current !



Some references

S
. G . Krantz

,
H

.
R

.
Parks. Geometric IntegrationTheory .

Birkhauser 2008.

Introduction to GMT focused on the theory of currents
.

L
. Simon

.
Lectures on Geometric MeasureTheory .

Australian National Univ
.
1983

Introduction to GMT covering the theory of currents and varifolds .

Less detailed than Krantz & Parks

H
.

Federer
. Geometric MeasureTheory . Springer 1996 (reprint of 1ted .)

Reference work on GMT and the theory of currents. Not a textbook
,

not for beginners.

F
. Morgan . Geometric MeasureTheory. A beginner's guide . Academic Press 2016.

A gentle introduction to Federer's book. Not fully detailed
,

but explains many ideas.

Other well known textbooks and reference works on GMT such as those

authored by K
.

Falconer and P. Mattila may cover the theory of

rectifiable sets (in some cases quite extensively) but not currents .


